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Abstract

Machine learning offers a promising set of tools for forecasting. However, some

of the well-known properties do not apply to nonstationary data. This paper uses

a simple procedure to extend machine learning methods to nonstationary data that

does not require the researcher to have prior knowledge of which variables are non-

stationary or the nature of the nonstationarity. I illustrate theoretically that using

this procedure with LASSO or adaptive LASSO generates consistent variable selec-

tion on a mix of stationary and nonstationary explanatory variables. In an empirical

exercise, I examine the success of this approach at forecasting U.S. inflation rates

and the industrial production index using a number of different machine learning

methods. I find that the proposed method either significantly improves prediction

accuracy over traditional practices or delivers comparable performance, making it

a reliable choice for obtaining stationary components of high-dimensional data.
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1 Introduction

Machine learning refers to a variety of computational methods for forming forecasts

using large numbers of potential predictors. Medeiros and Vasconcelos (2016) and

Goulet Coulombe et al. (2022) found that machine learning delivers promising forecasts

for many economic variables. Good forecasts of inflation are particularly important for

policy makers and business planners, but are particularly hard to obtain using OLS,

as demonstrated by Atkeson and Ohanian (2001), Fisher et al. (2002), and Stock and

Watson (2007). Machine learning methods may materially improve inflation forecasts

(Inoue and Kilian, 2008; Medeiros et al., 2021). Stock returns are another variable that

is notorious for being difficult to forecast, for which machine learning has shown promise

(Koo et al., 2020; Lee et al., 2020).

One challenge in applying these methods is that many of the variables in economics

and finance appear to be nonstationary. Stationarity is important for two reasons.

First, initial normalization is common for approaches such as LASSO, ridge regression,

elastic net, and principal component analysis. This normalization entails subtracting

the sample mean from each series and dividing it by the sample standard deviation.

However, if a variable is nonstationary, the sample mean and sample standard deviation

diverge as T !1.

Second, the presence of highly persistent series can exert a dominant influence dur-

ing estimation and result in misleading outcomes. Onatski and Wang (2021) provide

theoretical evidence demonstrating that nonstationary series tend to absorb a signifi-

cant portion of data variation, creating the illusion of a few influential factors even in

the absence of underlying structural factors. Additionally, integrated variables, such as

those exhibiting unit roots, typically exhibit weak sample correlations with stationary

variables that have low persistence. Consequently, regression techniques such as LASSO

and its variants may encounter difficulties in identifying relevant predictors through the

regularization technique.

Isolating the stationary component of each series poses an important challenge. The

common practice involves transforming each series into a stationary form, which often

involves rigorous analysis of the underlying trend mechanism and multiple intricate
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tests. Determining the appropriate transformation is not always trivial. Furthermore,

when dealing with a large set of predictors, it becomes important to employ an efficient

and easily replicable technique that does not necessitate individual analysis of each

series.

For many stationary or nonstationary variables, one can characterize the error made

when attempting to predict the variable h periods in advance using a linear function of p

of its own lagged values. Hamilton (2018) showed that this error remains stationary for

a large class of both stationary and nonstationary processes, including those with one

or more unit roots or deterministic polynomial time trends. Hamilton proposed that

the forecast error over a two-year horizon provides a practical interpretation of what

we could mean by the stationary cyclical component of a potentially nonstationary

variable. One appealing feature of this definition is that the forecast error can be

consistently estimated using OLS regression without the need for prior knowledge of

the trend mechanism. As a result, this detrending procedure is fully automatic and

treats each series in a uniform manner. I review these results in Section 2 of this paper.

My proposal is to use this automatic detrending prior to applying any of the popular

machine learning methods. That is, for each explanatory variable zit in the original data,

we first estimate the following regression by OLS,

zit = �̂i0 + �̂i1zi,t�h + �̂i2zi,t�h�1 + � � �+ �̂ipzi,t�h�p+1 + x̂it, (1)

and then use the estimated OLS residuals fx̂itgni=1 as potential predictors to forecast the

future values of some stationary variable of interest yt. In Section 3, I verify theoretically

that this approach results in consistent variable selection when used with two popular

machine learning methods, LASSO and adaptive LASSO. LASSO was first proposed

by Tibshirani (1996) and extended to adaptive LASSO by Zou (2006). The asymptotic

properties when the potential predictors are all stationary were analyzed by Zhao and Yu

(2006) and Medeiros and Mendes (2016). I demonstrate that with some mild additional

conditions, these results can be extended to nonstationary predictor variables using the

method proposed here.

Section 4 conducts an empirical study to evaluate the performance of various ma-
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chine learning methods in forecasting inflation rates and industrial production. To that

end, I first reproduce the results in Medeiros et al. (2021), forecasting inflation and

industrial production over their original sample period of 1990-2015 using a large data

set and a wide range of machine learning techniques and using their original proposed

transformations to make each individual variable stationary. Medeiros et al. (2021) find

that machine learning methods, particularly the random forests, provide good fore-

casting performance over this sample period. I then analyze the same data over the

same period using the automatic detrending procedure proposed here in place of the

individually-selected transformations used in the original study. The results indicate

that the forecasts obtained using my proposed method are comparable to the original

findings. I further extended the dataset up to December 2022. During this extended

period, prediction is considerably more challenging. I discovered that our automatic ap-

proach for machine learning estimates significantly reduces prediction errors, achieving

up to a 50% reduction when compared to using the selected transformations employed

in Medeiros et al. (2021). Notably, the application of the random forests method to

automatically detrended data consistently produces outstanding forecasts, irrespective

of the sample period. Overall, I conclude that regardless of the specific machine learn-

ing method or sample period used, basing estimates on automatically detrended series

leads at worst to comparable results and in many cases to significantly more accurate

predictions.

2 Proposed Method for Detrending Variables

In an important paper, Hamilton (2018) defined the cyclical component of any variable

to be the error we would make in trying to forecast the value at date t as a linear

function of p of its own values observed as of date t� h. Let zit denote the level of

a potentially nonstationary variable that is proposed as a potential predictor of some
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stationary variable of interest. Hamilton’s cyclical component xit is defined as

xit = zit �P(zitj1, zi,t�h, zi,t�h�1, : : : , zi,t�h�p+1)

= zit ��i0 ��i1zi,t�h ��i2zi,t�h�1 � � � � ��ipzi,t�h�p+1,
(2)

where P(yjx) denotes population linear projection of y on x, h is the forecasting horizon

for detrending, and p is the number of lags used for prediction. Note that xit is a

population concept that is determined by the true data-generating process for zit.

This definition of the cyclical component is related to the definition of trend proposed

by Beveridge and Nelson (1981). Their decomposition defines the permanent component

�it to be the long-run forecast of the future value:

�it = lim
h!1

lim
p!1E[zi,t+hjzit, zi,t�1, : : : , zi,t�p+1]. (3)

However, their results only apply to unit root processes and require the researcher to

know the population parameters of the process in order to be able to calculate the

double limits in (3).

This paper follows Hamilton (2018) and Hamilton and Xi (2023) in taking both h

and p to be fixed. They argue that h = 24 for monthly data or h = 8 for quarterly data

is a good choice, because the error in making a two-year-ahead forecast comes primarily

from cyclical factors such as whether a recession occurs in the next two years, whereas

something that can be predicted more than two years ahead results from broader and

slower-moving economic forces.

As demonstrated by Hamilton (2018) and Hamilton and Xi (2023), the cyclical

component defined by (2) is attractive for three important reasons. First, regardless of

the choice of h and p, the population object defined in (2) is stationary for a broad class

of stationary and nonstationary processes that could have generated zit. This property is

fundamental for the processed data to be used in machine learning approaches. Second,

the population linear projection coefficients �ij can be consistently estimated by OLS

estimation of (1) without needing to know the nature of the nonstationarity. We can

apply a unified linear projection without considering whether a series is stationary or
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not. Third, the cumulative squared difference between the OLS regression estimate of

the cyclical component x̂it and the true cyclical component xit defined in (2) is bounded

in probability,
TX
t=1

v2it = Op(1), (4)

for vit = x̂it � xit. Condition (4) turns out to be more than needed to extend many

machine learning methods to nonstationary data, as I demonstrate in the next section.

I now illustrate the above three claims with some leading examples.

Consider first a stationary AR(1) process,

zit = �izi,t�1 + �it,

where �it is white noise and j�ij < 1. The linear projection coefficients in (2) for

this case turn out to be �i1 = �hi and �ij = 0 for j 6= 1. The cyclical component

is xit =
Ph�1
s=0 �

s
i �i,t�s which is stationary with variance Vi =

Ph�1
s=0 �

2s
i �

2
� . The OLS

estimate is

α̂i =

0
@ TX
t=1

witw0
it

1
A
�10
@ TX
t=1

witzit

1
A

for wit = (1, zi,t�h, zi,t�h�1, ..., zi,t�h�p+1)0. The difference between the OLS regression

coefficient and the population linear projection coefficient is

α̂i � αi =

0
@T�1 TX

t=1

witw0
it

1
A
�10
@T�1 TX

t=1

witxit

1
A p! [E(witw0

it)]
�1[E(witxit)] = 0

since E(witxit) = 0. This confirms that OLS regression gives consistent estimates of

the population coefficients. The cumulative squared difference between the estimated

and true cyclical components is

TX
t=1

v2it =
TX
t=1

(α̂i � αi)
0witw0

it(α̂i � αi)

=
h
T 1/2(α̂i � αi)

i00@T�1 TX
t=1

witw0
it

1
AhT 1/2(α̂i � αi)

i
.
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But T�1
PT
t=1 witw0

it

p! E(witw0
it) and T 1/2(α̂i � αi) = Op(1), confirming (4).

For a more general process zit that is strictly stationary and ergodic, xit defined by

(2) is a linear combination of zit and its past values, each of which is stationary. Hence,

the forecast error xit is stationary, and it’s not hard to show that we still have α̂i
p! αi

and
PT
t=1 v

2
it = Op(1).

Consider next a random walk: zit = zi,t�1 + �it. This equation implies that zit =

zi,t�h+ xit for xit =
Ph�1
s=0 �i,t�s. The population linear projection coefficients are �ij =

1 for j = 1 and zero otherwise. The term xit is the true cyclical component, which is

stationary with variance h�2� . Taking for illustration the simple case when h = p = 1

and �it is a martingale-difference sequence with variance �2i and finite fourth moments,

we have the well known unit-root results that

T�2
TX
t=1

z2i,t�1
d! �2i

Z 1

0
[Wi(r)]

2dr

T (�̂i ��i)
d!
"Z 1

0
[Wi(r)]

2dr

#�1 "Z 1

0
Wi(r)]dWi(r)

#

for Wi(r) standard Brownian motion. These imply �̂i
p! �i and

TX
t=1

v2it =
h
T (�̂i ��i)

i2 24T�2 TX
t=1

z2i,t�1

3
5 d!

hR 1
0 Wi(r)]dWi(r)

i2
�2i

hR 1
0 [Wi(r)]2dr

i

which again is Op(1).

More generally, for any variable, we have the accounting identity

zit = zi,t�h +
h�1X
j=0

∆zi,t�j .

If zit is any unit-root process, then ∆zit is stationary meaning zit differs from zi,t�h by a

stationary term. The optimal forecast of zit as a linear function of zi,t�h, zi,t�h�1, ..., zi,t�h�p+1

is then equal to zi,t�h plus the forecast of
Ph�1
j=0 ∆zi,t�j . The latter can be calculated
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using a linear projection on p� 1 past changes of zi:

w̃p
i,t�h = (1, ∆zi,t�h, ∆zi,t�h�1, : : : , ∆zi,t�h�p+2)

0.

Let

�i,j�h = E[(w̃p
i,t�h)

0w̃p
i,t�h]

�1�E[(w̃p
i,t�h)

0∆zi,t�j ]

be the coefficient from projecting ∆zi,t�j on w̃p
i,t�h. It follows that,

P(zitj1, zi,t�h, zi,t�h�1, : : : , zi,t�h�p+1) = zi,t�h +
h�1X
j=0

�0i,j�hw̃p
i,t�h

= �i0 + �i1zi,t�h + �i2zi,t�h�1 + � � �+ �ipzi,t�h�p+1.

This identity allows us to derive �ij from �i,j�h. One can also generalize the unit-root

results above as discussed in Hamilton (2018) and Hamilton and Xi (2023).

The above results can also be extended to more general forms of nonstationarity.

Specifically, the population cyclical component xit defined by (2) is stationary and

can be consistently estimated by the corresponding OLS regression if either: (1) zit is

stationary around a polynomial deterministic trend of time with order of di � p, and

satisfies

T�
1
2

[Tr]X
s=1

(zit � �i0 � �i1t� �i2t
2 � � � � �i,dit

di)
d! !iWi(r),

where [Tr] is the largest integer no greater than Tr, Wi is a Brownian motion; or

alternatively (2) if di differences of zit are stationary for some di � p, and satisfy

T�
1
2

[Tr]X
s=1

(∆dizit � �i)
d! !iWi(r),

where �i represents the population mean of ∆dizit.

To summarize, for a broad class of stationary and nonstationary processes, the cycli-

cal component defined by (2) is stationary and can be consistently estimated with an

OLS regression. We do not have to use any a priori knowledge about whether potential

predictor variables are stationary, the value of di, or what transformations we need to
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make in order to get a stationary variable. We can always use OLS to get a consistent

estimate of the population cyclical component xit without knowing di or the type of

nonstationarity.

Figure 1: Level, first-differenced, and automatically detrended unemployment rate,
1990:01 - 2015:12

Lastly, we use the unemployment rate as an example to demonstrate this automatic

detrending method. On the left of Figure 1 I plot the level of unemployment rate from

January 1990 to December 2015. Based solely on the dynamics, it is not straightforward

to determine whether the series is stationary or not. McCracken and Ng (2016) propose

to use the first differences (FD) of unemployment, depicted in the middle of Figure 1,

as a stationary series. This transformation is a reasonable way to generate a stationary

series; however, the output behaves significantly differently from the original series.

On the right, I plot the unemployment rate processed by the automatic detrending

(AD) method. This output appears to be more informative in displaying the cyclical
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dynamics of unemployment while showing no obvious trend.

Figure 2 presents the same set of three plots from January 1960 to December 2022.

Due to the COVID-19 shock, at the beginning of year 2020, unemployment increases

rapidly to 14.7% and dropped below 8% within 5 months. Such drastic movements lead

to significant changes in first differences of unemployment. As depicted in the middle

plot, first differences after 2020 are on a different scale compared to previous values.

On the right, the automatically detrended series is behaves more closely to the original

series, exhibiting a spike but remaining within the same scale as previous values. These

figures, therefore, provide evidence that the automatic detrending method is capable of

capturing the key information in the original series with the trend eliminated.

Figure 2: Level, first-differenced, and automatically detrended unemployment rate,
1990:01 - 2022:12
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3 Theoretical Results

In this section I analyze the consequences of applying two popular machine learning

tools, LASSO and adaptive LASSO, to residuals from the n first-stage regressions de-

scribed in equation (1).

Statistical learning has two primary objectives: achieving robust prediction accuracy

and uncovering relevant predictive factors. Variable selection is especially important

when the underlying model has a sparse representation. With the boom of big data, the

least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani (1996)

received a lot of attention. The LASSO estimator uses a l1 regularization technique

that limits prediction variance in two ways: firstly, it tends to select a small set of

variables with strong predictive power, and secondly, it tends to shrinks the non-zero

coefficients towards zero. It has also been proved that the l1 approach is able to discover

the right sparse representation of the model under certain condition (Meinshausen and

Bühlmann, 2006).

However, for LASSO to achieve selection consistency, a nontrivial assumption known

as the “irrepresentable condition” is required. This condition serves to restrict the total

number of irrelevant predictors represented by those that are relevant (Zhao and Yu

(2006); Zou (2006)). Consequently, there are scenarios in which LASSO selection cannot

be consistent. For that reason, Zou (2006) introduces the adaptive LASSO estimator as

a variant of LASSO. The adaptive LASSO circumvents this condition by incorporating

a set of data-dependent weights to penalize each coefficient individually. Zou (2006)

establishes its oracle property with i.i.d. variables. Subsequently, Medeiros and Mendes

(2016) investigate adaptive LASSO in a time-series context with stationary covariates.

They provide sufficient conditions under which selection consistency and oracle property

are achieved.

Most theoretical analyses of LASSO and adaptive LASSO have relied on the as-

sumption of i.i.d or stationary data, yet in practice many variables we encounter are

nonstationary. In this section, I explore these two models when applying the auto-

matic detrending approach to the raw data prior to estimation with LASSO or adaptive

LASSO. I prove that, under certain additional conditions applicable to a wide range
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of data generating processes, both models can consistently reveal the correct sparse

representation.

For illustrative purposes, I begin by examining properties of LASSO with a fixed

number of covariates and relevant covariates, as the assumptions are more straightfor-

ward to interpret. The results can be naturally extended to allow for large number of

predictors. Subsequently, I study the behavior of adaptive LASSO, allowing both the

number of covariates and relevant covariates to approach infinity.

3.1 LASSO with Fixed n and Large T

Consider modeling a stationary variable yt with a linear function of an n� 1 vector xt

of potential predictors:

yt = x′tβ0 + ut. (5)

Existing methods often require all predictors in xt to be stationary. Consequently,

researchers typically form an assessment of what transformations are needed, if any, to

induce stationarity in each variable. In a common scenario, xt is a mix of levels, first

differences, and second differences of the original raw data zt. Researchers assume that

these transformed xt are the predictors that appear in equation (5).

Instead, I propose using the stationary cyclical component xit defined in equation

(2) as a potential predictor of yt. The postulation is that the ideal forecasting equation

would resemble the form of (5) if we knew the true cyclical component xit for each

predictor. The data input feasible to us would be the OLS residuals x̂t. The objective

here is to examine whether LASSO can identify the relevant predictors in xt if one could

only use x̂t.

Following common theory and practice, I assume that each potential predictor has

zero mean and unit standard deviation. Note that this would be problematic if xit

was nonstationary, since the population variance is undefined and the sample stan-

dard deviation diverges to infinity. However, the true cyclical component is stationary

by construction, and the sample variance of x̂it converges in probability to the unit

population variance.
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The proposed feasible LASSO estimator is defined as

β̂LASSO = argmin
�
kY � X̂β0k22 + �T

nX
i=1

j�j j, (6)

where X̂ is a T � n matrix of residuals from the n OLS regressions in (1), and k � k22
denotes the Euclidean norm. The second term in equation (6) is the so-called “l1 penalty

”. �T is a non-negative regularization parameter that diverges with the sample size T . It

allows LASSO to continuously shrink coefficients toward zero, or sometimes to exactly

zero.

3.1.1 Assumptions for LASSO

In this section, I first outline the standard conditions that are typically imposed when

we observe either i.i.d data or the stationary component xt. These assumptions pertain

to the data generating process of xt, convergence of the empirical covariance matrix,

and the “irrepresentability” or irrelevant variables. Additionally, it is crucial to have a

reasonably good estimator X̂ such that the key information in xt is not “filtered away”.

In response to that, I specify a sufficient assumption required for the estimator X̂.

The first set of assumptions restricts the data generating processes of xt and ut.

Assumption (DGP). We make the following assumptions about fxt,utg.

(i) fxt,utg is a zero-mean weakly stationary process with finite second moment.

(ii) E(xtx0t) = Ω is nonsingular with ones along the principal diagonal.

Assumption DGP is standard. DGP (i) assumes that all variables that generate yt

are stationary with finite second moments. DGP (ii) is a standard normalization.

Before the next assumption, we need to first introduce some notations. Assume

a subset of the predictors are useful for explaining yt, whose indices are denoted by

S = fi : �0,i 6= 0g � f1, : : : ,ng. Let s = jSj denote the number of relevant variables,

and the remaining n� s are considered as irrelevant variables. Usually it is assumed

that the model has a sparse representation, i.e., s � n. Without loss of generality,
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write X as [ X(1) X(2) ], where X(1) is a T � s matrix with the relevant variables,

and X(2) is a T � (n� s) matrix with the irrelevant variables. Let xt(1)0 denote the

tth row of X(1) and xt(2)0 the tth row of X(2). Similarly, let β0 = [β0(1)0, 00n�s]0,

where β0(1) 2 Rs represents the active coefficients associated with X(1), and 00n�s is a

(n� s)� 1 vector of zeros. We partition the variance matrix of xt as

E
h
xtx0t

i
=

2
664 E[xt(1)xt(1)0] E[xt(1)xt(2)0]

E[xt(2)xt(1)0] E[xt(2)xt(2)0]

3
775 =

2
664 Ω11 Ω12

Ω21 Ω22

3
775 := Ω.

Accordingly, we partition the empirical covariance matrix as

T�1X 0X =

2
664 T�1X(1)0X(1) T�1X(1)0X(2)

T�1X(2)0X(1) T�1X(2)0X(2)

3
775 =

2
664 Ω̃11 Ω̃12

Ω̃21 Ω̃22

3
775 := Ω̃.

Note that this empirical covariance matrix is not feasible since X is not directly observed.

Assumption (DESIGN). The following conditions hold jointly.

(i) β0 is an element of an open subset Θn � Rn that contains 0.

(ii) Ω̃ = T�1X 0X p! Ω as T !1.

Next, we introduce a condition on the correlation between the relevant and irrelevant

variables.

Assumption (IC). There exists a positive (n� s)� 1 vector η < 1 such that with

probability approaching one

jΩ21(Ω11)
�1sign(β0(1))j � 1� η,

where the inequality holds element-by-element. Here sign(·) is a sign function

that maps positive elements to 1, negative elements to -1 and zeros to zeros, i.e.,

sign(β0(1)) = 1fβ0(1) > 0g � 1fβ0(1) < 0g.
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The above condition is referred to as the “Irrepresentable Condition” (Zhao and Yu

(2006); Zou (2006)). Note that Ω21(Ω11)�1 is the coefficient from a population linear

projection of x2t on x1t. The condition bounds the size of this coefficient, and thereby

limits the extent to which the irrelavant variables could be correlated with the active

variables. In particular, the Irrepresentable Condition would hold for any sign(β0(1))

if

max
j2Sc

k(X(1)0X(1))�1X(1)0[X(2)]jk1 � 1� �, (7)

where [X(2)]j is the jth column of X(2). Here kwk1 = E[
Pn
i=1 jwij] represents the

population l1-norm of an n� 1 vector w. Equation (7) is also referred to as the Mutual

Incoherence condition (Wainwright, 2019). It explicitly restricts the maximum amount

of any irrelevant variable X2j could be explained by X(1). In the ideal case, if X2j

is orthogonal to the space spanned by X(1) for all j = 1, : : : ,n� s, then LASSO can

differentiate the relevant and irrelevant variables perfectly. As we cannot hope for

such orthogonality, the Irrepresentable Condition imposes certain level of orthogonality

to exist. For instance, Nardi and Rinaldo (2011) demonstrate that if model (5) is a

simple autoregression with large n, then condition IC can be satisfied with exponentially

decaying autocovariances.

Lastly, I describe the condition required for the estimator X̂.

Assumption (ESTIMATION). There exists � > 0 such that for all i = 1, : : : ,n

TX
t=1

v2it = Op(T
1/2��),

where vit = x̂it � xit is the estimation error.

Note this assumption is strictly weaker than the condition (4), allowing
PT
t=1 v

2
it to

grow with the sample size, as long as it does so slower than
p
T .
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3.1.2 Main Results for LASSO

Theorem 1 (Sign Consistency for LASSO). Suppose Assumptions DGP, DESIGN,

IC and ESTIMATION hold. Let S = fi : �0,i 6= 0g denote the set of indices of

nonzero coefficients, and SLASSOT = fi : �̂LASSOi 6= 0g. If �T
T ! 0 and �T

T
1+c
2

! 1
for some 0 � c < 1, then

(i) P (SLASSOT = S)! 1.

(ii) P [sign(β̂LASSO(1)) = sign(β0(1))] ! 1 as T ! 1, where β̂LASSO(1) repre-

sents the coefficient estimates associated with X(1).

The first part of Theorem 1 establishes that LASSO can consistently choose relevant

predictors with automatically detrended data. The second part shows that LASSO can

correctly choose the signs of those relevant variables asymptotically.

3.2 Adaptive LASSO with Growing n and T

In this section, we establish selection consistency for the adaptive LASSO estimator,

allowing both the number of candidate predictors and relevant predictors to approach

infinity.

Similar to the previous section, we first layout assumptions imposed when the sta-

tionary component xt was observed directly. These conditions were first established

by Medeiros and Mendes (2016). They solve the standard minimization problem for

adaptive LASSO:

β̃MM = argmin
�
kY �Xβk22 + �n,T

nX
i=1

wij�ij (8)

w := fw1,w2, : : : ,wng is a weights vector that allows each coefficient to be penalized in-

dividually. These weight parameters are data-driven and are crucial to achieve selection

consistency without the Irrepresentable Condition.
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The adaptive LASSO estimator is

β̂adalasso = argmin
β
kY � X̂βk22 + �n,T

nX
i=1

wij�ij. (9)

We adhere to the notation convention in Section 3.1.1. Let β̃MM (1) and β̃MM (2)

denote the coefficient estimates associated with the relevant variables and irrelevant

variables obtained from model (8), and let β̂adalasso(1) and β̂adalasso(2) be the estimates

obtained from (9). To emphasize that the number of active predictors may increase

with n, we use the notation Sn = fi : �0,i 6= 0g � f1, : : : ,ng to denote the potentially

growing set of indices of relevant covariates, and sn = jSnj to denote its cardinality.

3.2.1 Assumptions

Assumption (DGP’). In addition to DGP, the following assumptions hold for

fxt,utg.

(i) max
1�i�n

T�1
PT
t=1 x

2
it

p! 1

(ii) For some finite, positive constant cm and m � 2, Ejxitutjm � cm for 8i =
1, : : : ,n and 8t.

(iii) E[utjFt] = 0, where Ft = �(xt,ut�1, xt−1,ut�2, xt−2,ut�3, : : : ).

Assumption DGP’ is also assumed in Medeiros and Mendes (2016). DGP’ (i) requires

the sample variances of all variables converges uniformly to their unit variances. This

condition implicitly restricts the growing rates of n. We refer readers to Appendix A

in Medeiros and Mendes (2016) for an in-depth discussion of potential data generating

processes of xit and rates of n. DGP’ (iii) assumes ut to be a martingale difference

process and allows for conditional heteroskedasticity.

Assumption (DESIGN’). In additional to DESIGN, the following conditions hold

jointly.

(i) There exists �min > 0 such that min
i=1,:::sn

j�0,ij > �min.
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(ii) There exists a constant �max <1 such that max
i=1,:::sn

j�0,ij < �max.

(iii) There exists a constant 0 < �min < 1 such that inf
α0α=1

α0Ω11α > 2�min.

(iv) max
1�i,j�sn

[jΩ̃11 �Ω11j]i,j � �min

sn
with probability converging to one as T !1.

DESIGN’ (i) and (ii) define a lower bound and an upper bound of the non-zero

coefficients f�0,1, : : : ,�0,sng. Note that �min is allowed to decrease with the sample size,

and the rate is specified in the main theorem. DESIGN (iii) requires the matrix Ω11

to be non-degenerate, in the sense that the minimal eigenvalue is bounded. DESIGN

(iv) imposes uniform convergence on the sub-matrix Ω̃11, which places constraints on

the dependence and tail structure of relevant predictors.

Assumption (WEIGHTS). As T !1, the weights w1, : : : ,wn satisfy

(i) There exists 0 < a < 1 and a sufficiently large positive constant cw such that

min
i=sn+1,:::,n

T�a/2wi > cw

s
sn

�min

with probability approaching one.

(ii) There exists wmax < T
a

2 such that
Psn
i=1w

2
i < snw

2
max with probability con-

verging to one.

As discussed by Zou (2006), the weights vector is the key to achieve the oracle prop-

erties without imposing condition IC. The weights put distinct degrees of penalization

to each coefficient. In the ideal case, we hope the irrelevant predictors are assigned

with greater penalization, forcing their coefficient estimates towards zero values. For

the same reason, weights imposed on relevant predictors should be limited. WEIGHTS

(i) sets a lower bound for the rate of divergence of weights for irrelevant covariates, and

WEIGHTS (ii) restricts the amount of weights put on relevant covariates.

With fixed number of covariates, Zou (2006) proposed to take wi = 1/jβ̂ij
 , where

β̂ is a root-n-consistent estimator (for example, β̂OLS) and 
 is a positive constant. In

that case, WEIGHTS (i) is satisfied for 
 > a, and WEIGHTS (ii) automatically holds
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for large T . When n!1, a root-n-consistent estimator still satisfies WEIGHTS (i) if

sn increases slowly.

Assumption (REG). As T !1, the regularization parameter �n,T satisfies

(i)

n1/mT (1�a)/2

�n,T
! 0.

(ii)

s1/2
n wmax

�min

�n,Tp
T
! 0.

The size of �n,T depends on both n and T . If n is fixed, we can simply choose

�n,T = o(T 1/2). For growing n, conditions (i) and (ii) implicitly impose constraints

on the relationship between n, s, and T . This is because both conditions can only be

satisfied jointly if wmax

�min
n

1
ms

1
2
n increases slower than T

a

2 . Medeiros and Mendes (2016)

illustrate that �n,T = n
1
mT

1
2�a( 12� 1

m
) is a viable choice, given that s

1
2
nwmax/�min =

O(n
b

m ) for some b > 0 and that n is a specified polynomial function in T .

Lastly, we investigate conditions required for the estimator X̂. We impose two

conditions on the order of estimation error vit := x̂it � xit.

Assumption (ESTIMATION’). As T !1,

(i)

max
1�i�n

TX
t=1

v2it = op
�
�2n,TT

a�1�.

(ii)

TX
t=1

� snX
i=1

vit
�2

= op
�
�2n,TT

a�1�.
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The first part of assumption ESTIMATION’ requires the maximum of sum of squared

estimation error to increase at a rate slower than �2n,TT
a�1. Note that according to

REG (i), the rate of �2n,TT
a�1 exceeds n

2
m . Suppose we take our previous example of

�n,T = n
1
mT

1
2�a( 12� 1

m
), then we have �2n,TT

a�1 = n
2
mT

2
m . Since we’ve shown that for

a wide class of data generating processes
PT
t=1 v

2
it = Op(1), restricting the maximum

of this variable then implicitly restricts the number of candidate predictors. Condition

(ii) can be satisfied if max
1�i�sn

PT
t=1 v

2
it = op

�
s�1n �2n,TT

a�1�, although this condition is

much stronger than (ii). In the example of s = n
1
m , (ii) is satisfied if max

1�i�sn
PT
t=1 v

2
it =

op
�
n

1
mT

2
m

�
. Therefore, Estimation’ (ii) restricts the number of active predictors.

3.2.2 Main Results for Adaptive LASSO

The following theorem reproduces the first main result established in Medeiros and

Mendes (2016). This result shows that the adaptive LASSO estimator consistently

selects the relevant variables and their signs when xt is feasible to the researcher.

Theorem 2. (Medeiros and Mendes, 2016) Suppose Assumption DGP’, DESIGN’,

WEIGHTS and REG hold. Let SMM
n,T = fi : �̃MM

i 6= 0g. If �min >
�n,T

T 1�a/2
s1/2
n

�min
, then

(i) P (Sn = SMM
n,T )! 1.

(ii) P [sign(β̃MM (1)) = sign(β0(1))]! 1 as T !1.

The next theorem demonstrates that the previous result also applies to β̂adalasso

when xt has to be estimated, provided that condition ESTIMATION’ holds.

Theorem 3. Assume DGP’, DESIGN’, WEIGHTS, REG, and ESTIMATION’

hold. Let Sadalasson,T = fi : �̂adalassoi 6= 0g. If �min >
�n,T

T 1�a/2
s1/2
n

�min
, then

(i) P (Sn = Sadalasson,T )! 1.

(ii) P [sign(β̃adalasso(1)) = sign(β0(1))]! 1 as T !1.

20



4 Forecasting Inflation and Industrial Production with

Large Data

A fundamental goal of statistical learning is to enhance forecasting performance when

many potential predictors are available. Inflation rates are particularly important for

policymakers and business planners. Factor model first became prevalent in forecasting

inflation. Stock and Watson (1999) pioneer the use of the first principal component

derived from a pool of 168 macroeconomic variables in forecasting inflation. They find

the inclusion of measures of aggregate activities consistently improve upon Phillip curve

forecasts over the period 1959:01 - 1997:09. Their findings lead to the establishment of

the Chicago Fed National Activity Index, the first principal component of 85 existing

monthly macroeconomic indicators. Later on, more evidence emerged to support the us-

age of other machine learning methods. For instance, Inoue and Kilian (2008) find that

bagging consistently outperforms the univariate benchmark in forecasting inflation over

the period 1971:04 - 2003:07. The reduction in Mean Squared Error (MSE) can exceed

35% when forecasting inflation values in 1 year. They also find similar improvements

when employing the Bayesian shrinkage predictor, the ridge regression predictor, the

iterated LASSO predictor, and the Bayesian model average predictor based on random

subsets of extra predictors.

A recent study deserving special attention is the one conducted by Medeiros et al.

(2021). Using the FRED-MD data developed by McCracken and Ng (2016), they un-

dertake a comprehensive investigation in search of the best machine learning approach

for predicting inflation. They provide strong evidence that machine learning models

are are systematically more accurate than the benchmarks when forecasting inflation

during 1990:01 - 2015:12, achieving reductions in MSE up to 30% in some scenarios.

They identify the random forests model as the winning model, attributing its success

to its nonlinear nature and outstanding variable selection capabilities.

In most application we encounter, it is common to see researchers apply transforma-

tions that are assumed to remove trends. Each series is assigned with an individually

hand-picked transformation, and the resulting data input usually consists of levels,
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first-differences, second-differences, etc., of the original series. This is undoubtedly a

reasonable way to generate stationary series. Yet choosing the right transformation can

be a difficult task, especially for high-dimensional data. Moreover, as we illustrated in

Section 2, transformed data tend to exhibit quite different properties.

In this application, I investigate the predictability of two variables - inflation rates

and industrial production - using high-dimensional data that has been detrended using

the proposed automatic detrending approach as opposed to using assumed transforma-

tions. To that end, I undertake a replication of the forecasting exercise in Medeiros

et al. (2021) and introduce two important extensions to address our research question.

Firstly, to determine which method yields more informative series for prediction, I em-

ploy the same models in Medeiros et al. (2021) as benchmarks and compare them with

models using data detrended through the proposed automatic detrending procedure.

This exercise aims to assess the predictive content of data applied with assumed trans-

formation versus data detrended with the proposed automatic procedure for the sample

period 1990:01 to 2015:12, which is the out-of-sample window studied in Medeiros et al.

(2021).

Secondly, We update the above exercise to the most recent data. In addition to

serving as a robustness check, the second extension is of practical importance, especially

in light of the significant shocks experienced by many variables during the COVID-19

pandemic era. According to the April 2022 vintage of FRED-MD data, 40 out of 127

variables should be considered as outliers when compared to ten times their interquartile

range. Therefore, selecting the appropriate method to isolate the stationary component

becomes even more crucial during the time of COVID. Our results demonstrate that

the proposed automatic detrending method significantly improves the predictability of

both variables of interest.

4.1 Methodology and Data

Let yt represent the outcome variables. In particular, we are interested in two variables:

yCPIt = 1200
h
log (CPIt)� log (CPIt�1)

i
(10)
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and

yIPt = 1200
h
log (IPt)� log (IPt�1)

i
, (11)

where CPIt and IPt are the consumer price index and industrial production index at

time t.

Consider the following forecasting model

yt+h = g(h)(xt) + ut+h, (12)

where xt is a n� 1 vector of stationary predictors. Given that the raw data may exhibit

nonstationarity, we assume xt is only estimable, through either the proposed automatic

detrending method or via the assumed transformation. g(h)(�) is a (potentially non-

linear) function that maps today’s covariates to future values of inflation or industrial

production h periods ahead. Here we use h to denote the horizon of the forecast-

ing exercise. Note that this forecasting horizon differs from the one in the automatic

detrending procedure defined in equation (2).

The forecasting model in Medeiros et al. (2021) is characterized by

ŷt+hjt = ĝ
(h)
t�Rh+1:t(x̂Tt ),

where x̂Tt denotes series processed by selected transformations, and ĝ
(h)
t�Rh+1:t(�) is the

estimated forecasting function given data from time t�Rh+ 1 to time t. The estimation

of function ĝht�Rh+1:t is based on rolling-windows of a fixed-length, and Rh represents

the window size given the forecasting horizon h.

The forecasting model using data processed by our automatic detrending method is

given by

ŷt+hjt = ĝ
(h)
t�Rh+1:t(x̂ADt ).

The FRED-MD data used in this application is a large monthly macroeconomic

database established by McCracken and Ng (2016). This dataset is updated in real-
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time and can be accessed from McCraken’s webpage1. FRED-MD covers a wide range

of economic activities. Variables are divided into 8 categories: (1) output and income;

(2) labor market; (3) housing; (4) consumption, orders, and inventories; (5) money and

credit; (6) interest and exchange rates; (7) prices; and (8) stock market.

To facilitate the use of this database, McCracken and Ng (2016) provide a suggested

transformation for each individual series. These transformations are indicated by a

transformation code (“tcode ”) in their database. The analyses conducted in Medeiros

et al. (2021) are based on x̂Tt derived using the specified transformation code.

Following Medeiros et al. (2021), the first forecasting exercise uses data from January

1960 to December 2015, and the out-of-sample period is January 1990 to December 2015.

For the second exercise, I use data from January 1960 to December 2022, and the out-

of-sample window is January 2016 to December 2022. Series with missing values are

dropped, which leaves us 122 variables. Additionally, the first four principal component

estimates are also included as potential predictors. For each of the 126 predictors, we

include four of its lags, resulting in a total of 508 predictors.

4.2 Machine Learning Methods

In this section, I provide a brief overview of the machine learning approaches utilized

in each forecasting exercise.

We employ two benchmark models: the random walk model (RW) and the autore-

gressive model (AR). In the RW model, prediction for h periods ahead is simply the

current value, i.e.,

ŷt+hjt = yt.

For the AR model, the prediction would be

ŷt+hjt = �̂h0 + �̂h1yt + : : : , �̂hpyt�p+1,

1https://research.stlouisfed.org/econ/mccracken/fred-databases/.

24



where the number of lags p is determined by BIC.

The traditional OLS approach tends to overfit high-dimensional data, and it achieves

a perfect fit when n � T . However, this perfect in-sample fit merely means that OLS

attempts to fit all information, including the noises. Consequently, the out-of-sample

forecasts typically perform poorly and are sensitive to variations in the data values.

To reduce this forecasting variance, three classes of statistical learning methods are

commonly used. The first class uses the shrinkage technique. Shrinkage methods tend

to force coefficients toward zeros, and sometimes shrink to exactly zeros. The second

class consists of the factor model and its variants. The factor model assumes that

there exists a few common factors that drives the important dynamics in all variables.

Each common factor is a weighted average of all variables, and usually only a few

factors are included in predictions. The last class employs forecast combinations, where

each forecast is a weighted average of multiple forecasts. Forecast combination could

be especially helpful when the optimal model is uncertain or when many proxies are

available to measure the same economic activity.

In what follows, we delve into the specifications of each class of models.

4.2.1 Shrinkage

The shrinkage technique has an attractive bias-variance trade-off that helps with the

over-fitting issue. It reduces, or discard, the coefficient estimate a variable when its

information is weak. The shrinkage technique limits the size of coefficient estimates by

adding a penalty term, which is represented by R(�i,�,wi). in the following definition:

�̂ = argmin
�
kY �Xβk22 +

nX
i=1

R(�i,�n,T ,wi).

I consider the following three shrinkage methods.

1. Least Absolute Shrinkage and Selection Operator (LASSO)
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As we described in Section 3.1.1, Lasso estimator is defined as

β̂lasso = argmin
�
kY � X̂βk22 + �n,T

nX
i=1

j�ij.

The penalty term �n,T
Pn
i=1 j�j j forces many coefficient estimates to be exactly

zero. LASSO often offers good forecast performance because it reduces the vari-

ance component largely by discarding many predictors whose information is weak.

It further reduces variance by limiting the size of non-zero coefficients estimates.

The regularization parameter �n,T is chosen by BIC.

2. Adaptive LASSO (adaLasso)

Adaptive LASSO reduces forecast variances in a similar way to LASSO. It is

defines as

β̂adalasso = argmin
�
kY � X̂β0k22 + �n,T

nX
i=1

wij�ij.

Compared to LASSO, the adaptive LASSO introduces a set of data-dependent

weight parameters wi = j�̂FS j�1, where �̂FS comes from a first-step estimation2.

3. Ridge Regression (RR)

Ridge regression is proposed by Hoerl and Kennard (1970). It takes the following

l2 penalization form:

β̂RR = argmin
�
kY � X̂β0k22 + �n,T

NX
i=1

�2
i .

Ridge regression does not discard elements; instead, it assigns a small weight to

each predictor, and downweighs those that are less informative.

4.2.2 Common Factor Methods

1. Factor Model
2A viable choice of �̂FS is the inverse of OLS estimate. I follow Medeiros et al (2021) and use

wi =
1

�̂lasso

i
+T�1/2 .
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The factor model assumes that the underlying dynamics of a large number of

predictors can be explained by a few common latent factors. It assumes

xit = �0ift + uit,

where �i is a r � 1 vector of factor loadings that are invariant over time, and ft

represents the r latent common factors. One needs to first estimate the common

factors, and then use them to do forecasts. Factors can be computed by principal

component analysis, whose solution is analytically available.

2. Target Factor Model

The Target Factor Model, proposed by Bai and Ng (2008), is designed for scenarios

with many weak predictors. It computes principal components with a subset

of informative predictors. A first-stage linear regression is employed to select

variables that are significant given a significance level.

4.2.3 Forecast Combinations

The forecast combination method takes average over several model predictions. Aggre-

gating multiple predictive models helps to improve prediction accuracy because a single

predictive model can be sensitive to small changes in the data or unstable decision rules.

1. Bagging

In a series of influential technical reports, Breiman was among the earliest to

demonstrate, both theoretically and empirically, that aggregating multiple ver-

sions of an estimator into an ensemble can give substantial gains in accuracy.

Breiman (1996) proposes the bootstrap aggregation idea and named it bagging.

For each bootstrapped subsample, the algorithm selects the variables with high

t-statistics, and estimates the model again with only those selected variables. This

set of coefficients are then used to get one prediction of the outcome of interests.

The final prediction is calculated as the average of predictions from all bootstraps.

2. Complete Subset Regression (CSR)
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While bagging averages predictions from sub-samples, CSR averages forecasts from

subsets of covariates. For a fixed number of k < n predictors, complete subset

regression runs through all models with k predictors and take average of their

predictions as the final prediction. Typically it is reasonable to choose k far below

n. Combining diverse models often produces more stable forecasts. It was shown

theoretically by Elliott et al. (2015) that CSR exhibits attractive bias-variance

trade-off.

However, when the total number of predictors n is large, this algorithm is still com-

putationally difficult even for small k. Medeiros et al. (2021) adopt a pre-selection

procedure to eliminate weak predictors in the first stage: a linear regression with

all predictors is fitted to select those with large t-statistics. This pre-selection

procedure is also used in my exercise.

3. Random Forests (RF)

The RF model, introduced by Breiman (2001), is established upon the bootstrap

aggregation technique used in the bagging method. RF constructs a tree using

each individual sub-sample and achieves variance reduction by averaging predic-

tions from many sub-samples. Given that trees are notoriously noisy, RF greatly

benefits from the aggregating procedure.

Additionally, Random Forest (RF) employs only a subset of predictors to build

each tree. At each split in the tree, the algorithm is restricted from considering

the majority of predictors. Consequently, each tree uses a very different subset

of predictors. Such design aims to reduce the correlation among trees, thereby

further reduce variation stems from noisy predictors.

Another notable feature of RF is its nonlinearity. While this feature increases com-

putational complexity, it also allows RF to capture complex interaction structures

in the data and reduces bias.
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4.3 Results

The models are evaluated based on the root mean squared errors (RMSE). To facilitate

illustration, we present their RMSEs relative to those of the random walk model. A

RMSE ratio lower than one indicates that the model outperforms the random walk.

4.3.1 Forecasting CPI and IP from 1990 to 2015

Our first exercise uses data since 1960:01 to form out-of-sample predictions from 1990:01

to 2015:12. The primary objective is to compare the prediction power of two data inputs:

data processed with assumed transformations versus data detrended using the proposed

automatic method.

Table 1 reports the RMSE ratio for our first forecasting exercise, with forecasting

horizon h ranges from 1 month to 12 months. The outcome variable here is yCPIt defined

in (10). Each column in Table 1 displays the results for a particular forecasting horizon.

To provide an overall performance summary, the last column in Table 1 displays the

average RMSE ratio across all 12 forecast horizons.

For each machine learning method, the results are presented in two rows, with

white-colored rows displaying outcomes obtained using data processed with assumed

transformations (xTt ), and grey-colored rows presenting results from series detrended

using the automatic method (xADt ). For comparison purposes, bold text indicates sce-

narios where one data input results in an RMSE that is 5% lower than the other for a

specific forecasting horizon and machine learning model. These numbers highlight cases

where using x̂Tt and x̂ADt can potentially lead to significantly different forecasts. Addi-

tionally, cells highlighted in yellow are used to emphasize scenarios where the RMSE

difference exceeds 20%. Our results displayed in white-colored rows differ slightly from

those in Medeiros et al. (2021) because our rolling window size Rh is 3-years shorter, as

a result of a prior detrending step with linear projections.

We find that noticeable differences emerge when employing the ridge regression,

CSR and bagging. For ridge regression and CSR, using transformed series consistently

yields better forecasting performance, with reductions in RMSE of up to 20% for ridge

regression and 11% for CSR. Taking the average over RMSE ratios, the differences are
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11% and 7%, respectively. In contrast, the bagging method generally favors the use of

our automatic detrending for most forecasting horizons. Notably, when the forecasting

horizon is set to 3, 10, or 11 months, the improvements exceed 20% and may reach

up to 23%. For the other machine learning methods, x̂Tt and x̂ADt generate comparable

performance with only marginal differences.

Table 2 presents the same forecasting exercise conducted for predicting industrial

production between 1990:01 - 2015:12. We observe that adaptive LASSO and ridge

regression favors the use of transformed series, especially for longer forecasting horizon.

Using x̂Tt improves RMSE by 11%, 12.5%, and 25% when h equals to 8, 11, or 12

months. For the other horizons the difference is small. In the case of ridge regression,

the improvement ranges from 8% to 11% for forecasting horizons between 8 and 12

months. The bagging method once again prefer the use of x̂ADt , particularly when h

ranges from 7 to 9 months. The reduction can be as substantial as 47%, which is notably

significant when compared to other scenarios.

It’s worth noting that the random forests method exhibits a preference for x̂ADt . This

method stands out in Medeiros et al. (2021) for its exceptional forecasting performance

across all exercises. Here we observe some significant improvements when h is 3, 6, or

7 months, and moderate improvements for the other forecasting horizons.

4.3.2 Forecasting CPI and IP from 2016 to 2022

In this subsection we conduct the same forecasting exercise for period 2016:01 to 2022:12.

Table 3 reports predictions of CPI. Notably, we observe a shift in results: the ridge

regression method now strongly favors the of x̂ADt obtained from our automatic de-

trending method, marking a reversal of the outcomes seen in Table 1. The gain in

terms of RMSE reaches up to 53.2%, and exceeds 20% for almost all horizons. We also

observe strong performance using x̂ADt in the case of adaptive LASSO and factor model,

with improvements up to 20% and 25%. Although when h is between 3 to 5 months,

LASSO and adaptive LASSO appears to favor x̂Tt . Lastly, CSR once again favor x̂Tt ,

with improvements up to 15%.

The random forests method repeatedly delivers outstanding forecasting performance,
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especially when using x̂ADt . Remarkably, the RMSE ratios can be as low as 0.68, a rather

substantial improvement over the benchmark. When compared to using transformed

series x̂Tt , the improvement reaches up to 18%.

Finally, in Table 4 we observe that ridge regression continues to strongly favor x̂ADt
over x̂Tt when forecasting industrial production from 2016:01 to 2022:12, potentially

achieving a 49% improvement in RMSE. Factor model also displays significant pref-

erence of x̂ADt over x̂Tt , showing improvements up to 38%. For nearly all forecasting

horizons, the improvements are larger than 20%. Moreover, the random forests method

once again consistently outperforms with the use of x̂ADt across forecasting horizons.

Target factor, CSR and bagging also provide evidence that employing x̂ADt results in

significantly more accurate predictions, particularly when the forecasting horizon is

short. On the other hand, the LASSO estimator favors x̂Tt when h is short, with differ-

ences in RMSE remaining below 15%.

The two forecasting exercises present strong evidence that the automatic detrending

method handles drastic shocks better than transformations. To provide some intu-

ition, let’s consider a simple random walk process. In this scenario, the errors for a

two-year-ahead forecast are the accumulation of 24 different one-month-ahead forecast

errors. From the perspective of the Central Limit Theorem, a single shock would not

significantly influence the value of this cumulative error. the authors discovered only

two outliers among 134 variables in the April 2020 vintage when using the automatic

detrending method, as opposed to 40 out of 123 when using transformations.

Lastly, in Appendix B we conduct a robustness check where the detrending co-

efficients in equation (2) are calculated with sample prior to year 2016. This exercise

estimates the cyclical components with no information during the out-of-sample period,

including the COVID shock. In general, we find no notable changes to our conclusions

here.

4.3.3 Summary

In summary, our findings indicate that the automatic detrending method has the po-

tential to significantly enhance forecasting performance across various machine learning
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models. When predicting CPI and IP from 2016 to 2022, RMSE improvements can

reach up to 53.2% and 49% respectively. Notably, the random forests method consis-

tently delivers outstanding prediction performance among all machine learning methods

and exhibits a consistent preference for x̂ADt .

For the other models, using the automatic detrending method displays comparable

performance across most model specifications. This suggests that our method is a

reliable and efficient option for trend removal while preserving important information

in the original data.

5 Conclusion

As machine learning methods have gained prominence in forecasting, an effective method

for isolating stationary components from nonstationary raw data becomes essential. In

this paper, I propose an automatic detrending method as a reliable and computation-

ally efficient approach to remove nonstationarity in high-dimensional data. This method

could generate data inputs that is statistically appealing for predicting macroeconomic

variables with various machine learning methods. I show theoretically that LASSO and

adaptive LASSO are able to recover the true model representation with cyclical esti-

mates derived from the automatic detrending method. Our empirical evidence further

supports that this detrending procedure results in informative predictors, achieving sig-

nificantly low RMSE when predicting CPI and IP during period 2016-2022. This finding

is robust to the specific machine learning method being used or the out-of-sample fore-

casting period.

36



Appendix

A Proofs

A.1 Proof of Theorem 1

This section first provides some useful lemmas that guide us to the results in Theorem

1. All inequalities hold element-by-element. [�]ij denotes the element in the ith row

and jth column of a matrix, and [�]i denotes the ith element of a vector. We use Xj to

denote the jth column of matrix X. We define the T � n matrix V = X̂ � X.

Lemma 1. Under Condition DGP and Estimation,

1

T
X̂ 0X̂ p! Ω

Proof of Lemma 1. We write

h 1
T

TX
t=1

x̂tx̂0t
i
ij

=
1

T

TX
t=1

(xit + vit)(xjt + vjt)

=
1

T

TX
t=1

xitxjt +
1

T

TX
t=1

xitvjt +
1

T

TX
t=1

vitxjt +
1

T

TX
t=1

vitvjt

� 1

T

TX
t=1

xitxjt +

8<
:
� 1
T

TX
t=1

x2it

� 1
2
� 1
T

TX
t=1

v2jt

� 1
2

+
� 1
T

TX
t=1

v2it

� 1
2
� 1
T

TX
t=1

x2jt

� 1
2 +

� 1
T

TX
t=1

v2it

� 1
2
� 1
T

TX
t=1

v2jt

� 1
2

9=
; p! [Ω]ij .

The convergence follows from DGP(i), DESIGN (ii) and ESTIMATION.
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We have the similar convergence result for the lower bound:

h 1
T

TX
t=1

x̂tx̂0t
i
ij
� 1

T

TX
t=1

xitxjt �
8<
:
� 1
T

TX
t=1

x2it

� 1
2
� 1
T

TX
t=1

v2jt

� 1
2

+
� 1
T

TX
t=1

v2it

� 1
2
� 1
T

TX
t=1

x2jt

� 1
2 +

� 1
T

TX
t=1

v2it

� 1
2
� 1
T

TX
t=1

v2jt

� 1
2

9=
; p! [Ω]ij .

Lemma 2. For any η′ 2 (η, 1),

P
n
jΩ̂21(Ω̂11)

�1sign(β0(1))j � 1 − η′
o
! 1 as T !1.

Lemma 2 gives us an empirical version of Condition IC.

Proof of Lemma 2. By Lemma 1, we have Ω̂21
p! Ω21 and Ω̂11

p! Ω11. Hence,

Ω̂21(Ω̂11)
�1sign(β0(1))�Ω21(Ω11)

�1sign(β0(1))
p! 0.

Therefore,

jΩ̂21(Ω̂11)
�1sign(β0(1))j � jΩ21(Ω11)

�1sign(β0(1))j
�jΩ̂21(Ω̂11)

�1sign(β0(1))�Ω21(Ω11)
�1sign(β0(1))j p! 0

Lastly,

P (jΩ̂21(Ω̂11)
�1sign(β0(1))j > 1 − η′)

=P (jΩ̂21(Ω̂11)
�1sign(β0(1))j � jΩ21(Ω11)

�1sign(β0(1))j > η� η′)! 0

Lemma 3. With probability converging to one,

n
AT \BT

o
�
n

sign(β̂LASSO(�T )) = sign(β0)
o
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for

AT = \si=1fj(Ω̂11)
�1 1p

T
X̂ 0(1)Ûji <

p
T jβ0,ij � �T

2
p
T
j(Ω̂11)

�1sign(β0)(1)jig,

BT = \n�si=1 fjΩ̂21(Ω̂11)
�1 1p

T
X̂ 0(1)Û � 1p

T
X̂ 0(2)Ûji � �T

2
p
T
[η′]ig,

where Û = Y � X̂β0 = U + (X � X̂)β0 is the error term U plus the estimation

error, and [�0]i denotes the ith element of vector η′.

Proof of Lemma 3. The proof is a direct application of Zhao and Yu (2006). We

replace X and U with X̂ and Û in our application.

Proof of Theorem 1. The folloing argument closely follows Theorem 1 in Zhao and Yu

(2006).

1� P (AT \BT )
�P (Ac

T ) + P (BcT )

�
sX

i=1

P
� 1p

T

���hΩ̂�1
11 X̂(1)0Û

i
i

��� � p
T
����0,i���� �T

2
p
T

���hΩ̂�1
11 sign(β0)(1)

i
i

�

+
n�sX
i=1

P
�
jΩ̂21(Ω̂11)

�1 1p
T

X̂ 0(1)Û � 1p
T

X̂ 0(2)Ûji > �T

2
p
T
[η′]i

�

By ESTIMATION and stationarity of fxt,utg, the ith element of 1p
T

X̂(1)Û is

h 1p
T

X̂ 0(1)Û
i
i

=
h 1p

T
X 0(1)U

i
i
+

1p
T

TX
t=1

vituit +
1p
T

TX
t=1

xitvit +
1p
T

TX
t=1

v2it

�
h 1p

T
X 0(1)U

i
i
+
� 1p

T

TX
t=1

v2it

� 1
2
� 1p

T

TX
t=1

u2it

� 1
2 +

� 1p
T

TX
t=1

x2it

� 1
2
� 1p

T

TX
t=1

v2it

� 1
2 +

1p
T

TX
t=1

v2it

=
h 1p

T
X 0(1)U

i
i
+ op(1)
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Then by Lemma 1, we have the standard convergence results:

Ω̂�1
11

1p
T

X̂ 0(1)Û d! N(0, Ω�1
11 V1)

Ω̂21(Ω̂11)
�1 1p

T
X̂ 0(1)Û � 1p

T
X̂ 0(2)Û d! N(0,V2)

for some matrices V1 and V2. Lastly, because �T
T ! 0 and �T

T
1+c
2

! 1, it is clear that

P (Ac
T ) + P (BcT )! 0, which concludes the proof.

A.2 Proof of Theorem 3

We start with some technical lemmas and propositions. The following lemma bounds

the asymptotic difference in the eigenvalues of Ω̂ and Ω.

Lemma 4. Under condition DESIGN’ and ESTIMATION’,

inf
α0α=1

α0Ω̂11α > �min w.p.a 1.

Proof of Lemma 4. First, we will show the following statement:

max
1�i,j�sn

[jΩ̂11 �Ω11j]ij � �min

sn
w.p.a 1. (13)

Proving statement (13) uses the triangle inequality and Assumption DESIGN (iv):

max
1�i,j�sn

[jΩ̂11 �Ω11j]ij � max
1�i,j�sn

[jΩ̂11 � Ω̃11j]ij + max
1�i,j�sn

[jΩ̃11 �Ω11j]ij

� max
1�i,j�sn

[jΩ̂11 � Ω̃11j]ij + �min

sn
.
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Write out the element at ith row and jth column of Ω̂11:

[Ω̂11]ij =
X̂ 0

iX̂j

T

=
1

T

TX
t=1

x̂itx̂jt

=
1

T

TX
t=1

[(xit + vit)(xjt + vjt)]

=
1

T

TX
t=1

xitxjt +
1

T

TX
t=1

vitxjt +
1

T

TX
t=1

xitvjt +
1

T

TX
t=1

vitvjt

= [Ω11]ij +
1

T

TX
t=1

vitxjt +
1

T

TX
t=1

xitvjt +
1

T

TX
t=1

vitvjt.

Hence,

max
1�i,j�sn

[jΩ̂11 �Ω11j]ij

� max
1�i,j�sn

8<
:
��� 1
T

TX
t=1

vitxjt
���+ ��� 1

T

TX
t=1

xitvjt
���+ ��� 1

T

TX
t=1

vitvjt
���
9=
;

� max
1�i,j�sn

8<
:( 1T

TX
t=1

v2it)
1
2 (

1

T

TX
t=1

x2jt)
1
2 + (

1

T

TX
t=1

x2it)
1
2 (

1

T

TX
t=1

v2jt)
1
2 + (

1

T

TX
t=1

v2it)
1
2 (

1

T

TX
t=1

v2jt)
1
2

9=
;

�2 max
1�i�sn

(
1

T

TX
t=1

v2it)
1
2 max
1�i�sn

(
1

T

TX
t=1

x2it)
1
2 + max

1�i�sn
(
1

T

TX
t=1

v2it)

By condition REG and ESTIMATION’, it can be shown that max
1�i�sn

1
T

PT
t=1 v

2
it

p! 0,

and by Condition DGP’ max
1�i�sn

1
T

PT
t=1 x

2
it = Op(1). Therefore

max
1�i�n

[jΩ̂11 �Ω11j]ij p! 0,

and this concludes our proof of (13).

Next, for any vector α 2 Rs\f0g,

α0Ω11α� α0Ω̂11α � jα0(Ω11 � Ω̂11)αj � jαj1j(Ω11 � Ω̂11)αj1
� jαj21

�min

sn
� snα0α

�min

sn
= jαj22�min.
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where j � j1, j � j2 and j � j1 are l1 norm, l2 norm and supremum norm. Therefore,

α0Ω̂11α

α0α
� α0Ω11α

α0α
� �min.

We minimize both sides and use condition DESIGN (4) to get

inf
α0α=1

α0Ω̂11α > inf
α0α=1

α0Ω11α� �min > �min w.p.a 1.

In the next part, we bound the term T�
1
2

���PT
t=1 xitutj.

Lemma 5. Define the event En,T (�0) =
n
2 max
i=1,:::,n

T�
1
2

���PT
t=1 xitut

��� < �0
o
. Event

En,T (�n,TT�(1�a)/2) has probability approaching one. More specifically,

P

0
@ max
i=1,:::,n

T�
1
2

��� TX
t=1

xitut
��� > �n,T

2
p
T
T

a

2

1
A � c

n

�mn,T
Tm(1�a)/2

for some constant c > 0.

Proof. See Lemma 4 in Medeiros & Mendes (2016).

Lemma 6. Let W(1) = diag(w1, : : : ,ws) be the diagonal matrix consists of weights

of active predictors, and ν0 = sign[β0(1)] be the vector of signs of those active

predictors. The probability that the adaptive LASSO estimator correctly selects

the sign of all predictors has the following lower bound:

P [sign(β̂) = sign(β0)] � P (An,T \Bn,T ),

where

An,T = \sni=1

(
1p
T

���hΩ̂�1
11 X̂(1)0Û

i
i

��� < p
T jβ0,i

���� �

2
p
T

���hΩ̂�1
11W(1)ν0

i
i

���
)

Bn,T = \ni=sn+1

(
2

1p
T

���X̂ 0
iM (1)Û

��� < 1p
T
�
h
wi �

���T�1X̂ 0
iX̂(1)Ω̂�1

11W(1)ν0
���i
)
,
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where Û = Y � X̂β0 = U + (X � X̂)β0 is the error term U plus the estimation

error, and M(1) = IT � X̂(1)(X̂(1)0X̂(1))�1X̂(1)0.

Lemma 6 is similar to Lemma 3 and incorporate the weight parameters in bounding

eventsAn,T and Bn,T . The two events can roughly be described as "including all relevant

predictors" and "excluding irrelevant predictors".

Proof. The proof is a direct application of Proposition 1 of Zhao and Yu (2006).

Lastly, the following two lemmas relate the two events in Lemma 6 to the event in

Lemma 5.

Lemma 7. Assume DESIGN’, WEIGHTS, and ESTIMATION’ hold jointly, and

that �min >
�n,T

T 1�a/2
s
1
2
n

�min
. Then En,T (�n,TT�(1�a)/2) � An,T .

Proof of Lemma 7. By definition, we can write

Ac
n,T = [sni=1

n 1p
T

���hΩ̂�1
11 X̂(1)0Û

i
i

��� � p
T
����0,i���� �

2
p
T

���hΩ̂�1
11W(1)ν0

i
i

���o. (14)

For the LHS of (14),

1p
T

���hΩ̂�1
11 X̂(1)0Û

i
i

��� � �
inf

α0α=1
α0Ω̂11α

��1h snX
j=1

(T�1/2X̂ 0
jÛ)2

i1/2

� ��1min

h snX
j=1

(T�1/2X̂ 0
jÛ)2

i1/2
w.p.a. 1.

Similarly, with the Cauchy-Schwarz inequality and Assumption WEIGHTS we can

show that

���hΩ̂�1
11W(1)ν0

i
i

��� � ��1mins
1
2
nwmax � s

1
2
nT

a

2

�min
w.p.a. 1.

For �min >
�

T 1�a/2
s
1
2
n

�min
,

p
T j�0,ij � �

2
p
T

���hΩ̂�1
11W(1)ν0

i
i

��� � �

2
p
T

s
1
2
nT

a

2

�min
w.p.a. 1.
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Put the above results together, we have

Ac
n,T �

8><
>:

snX
j=1

(T�1/2X̂ 0
jÛ)2 � (

�n,T

2
p
T
sn

1
2T

a

2 )2

9>=
>;

�
(

max
i=1,:::sn

2jT�1/2X̂ 0
jÛj �

�n,T

2T (1�a)/2

)

�
8<
: max
j=1,:::sn

2jT�1/2X 0
jU j �

�n,T

2T (1�a)/2

+ T�1/2 max
j=1,:::sn

2
���X 0

j(X � X̂)β0 + V 0
jU + V 0

j(X � X̂)β0
���
9=
; w.p.a 1,

where the T � 1 vector Vj = X̂j � Xj is T � 1 is the jth column of matrix V = X̂ � X.

Recall that

Ecn,T (�n,TT�(1�a)/2) =
8<
: max
i=1,:::,n

T�
1
2

��� TX
t=1

xitut
��� > �n,T

2
p
T
T

a

2

9=
; .

To show that Ac
n,T � Ecn,T (�n,TT�(1�a)/2) w.p.a 1, it suffices to show that

T�1/2 max
j=1,:::sn

���X 0
j(X � X̂)β0 + V 0

jU + V 0
j(X � X̂)β0

���
�T�1/2

n
max

j=1,:::sn

���X 0
j(X � X̂)β0

���+ max
j=1,:::sn

���V 0
jU
���+ max

j=1,:::sn

���V 0
j(X � X̂)β0

���o

=op(
�n,T

T (1�a)/2 ).

We write the first term as

max
j=1,:::sn

��� 1p
T

X 0
j(X � X̂)β0

��� = max
j=1,:::sn

��� 1p
T

TX
t=1

xjt

nX
i=1

vit�i
���

� max
j=1,:::sn

� 1
T

TX
t=1

x2jt

� 1
2
����max

���� TX
t=1

(
snX
i=1

vit)
2
� 1
2

= op
� �n,T

T (1�a)/2
�
,

where max
j=1,:::sn

1
T

PT
t=1 x

2
jt = Op(1) by Assumption DGP’.
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Similarly, for the second term we have

max
j=1,:::sn

��� 1p
T

V 0
jU
��� = max

j=1,:::sn

��� 1p
T

TX
t=1

vjtut
���

� max
j=1,:::sn

� TX
t=1

v2jt

� 1
2
� 1
T

TX
t=1

u2t

� 1
2

= op
� �n,T

T (1�a)/2
�

Lastly, for the third term,

max
j=1,:::sn

��� 1p
T

V 0
j(X � X̂)β0

��� = max
j=1,:::sn

��� 1p
T

TX
t=1

vjt

nX
i=1

vit�0,i
���
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j=1,:::sn

� 1p
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TX
t=1

v2jt

� 1
2
� 1p
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TX
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(
snX
i=1

vit�0,i)
2
� 1
2
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j=1,:::sn

� 1p
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TX
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v2jt

� 1
2
����max

���� 1p
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TX
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(
snX
i=1

vit)
2
� 1
2
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� �n,T

T (2�a)/2
�
.

Therefore,

Ac
n,T �

8<
: max
j=1,:::s

2jT�1/2X 0
jUj �

�n,T

2T (1�a)/2

9=
; w.p.a 1,

which concludes that En,T (�n,TT�(1�a)/2) � An,T .

Lemma 8. If DGP’, DESIGN’, WEIGHTS, and ESTIMATION’ hold jointly, then

En,T (�n,TT� 1�a
2 ) � Bn,T w.p.a. 1.

Proof of Lemma 8.

Bcn,T = [ni=sn+1

(
2
��� 1p

T
X̂ 0

i M(1)Û
��� � 1p

T
�n,T

h
wi �

���T�1X̂ 0
iX̂(1)Ω̂�1

11W(1)ν0
���i
)
. (15)
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We plug in M(1) to the LHS of (15):

X̂ 0
i M(1)Û = X̂ 0

iÛ � X̂ 0
iX̂i(1)[X̂i(1)

0X̂i(1)]
�1X̂i(1)

0Û

:= Âi + B̂i.

We leave Âi as it is. Apply the Cauchy-Schwarz inequality to B̂i to get

jB̂ij �
� TX
t=1

x̂2it

� 1
2 jÛ 0X̂i(1)[X̂i(1)

0X̂i(1)]
�1X̂i(1)

0Ûj 12 ,

where
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p
T
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2
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A

1
2
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p
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p
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h
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0Û
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2
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3
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by Assumption DESIGN’. Therefore, w.p.a. 1
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p
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For the RHS of (15):

h
T�1X̂ 0

iX̂(1)Ω̂�1
11W(1)ν0

i2
=
n
T�1X̂ 0

iX̂(1)[T�1X̂(1)0X̂(1)]�1W(1)ν0
o2

� ν00W(1)[T�1X̂(1)0X̂(1)]�1W(1)ν0 � T�1X̂ 0
iX̂i

�
Psn
j=1w

2
i

inf
�0�=1

�0Ω̂11�

PT
t=1 x̂

2
it

T

� snw
2
max

�min

PT
t=1f2x2it + 2v2itg

T
w.p.a 1

� snT
a

�min
(2+ op(�

2
n,TT

a�2)) w.p.a 1

= Op(
snT

a

�min
).

Note that the final equality follows from Condition REG:
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where a < 1, �min is non-increasing, and s and wmax are non-decreasing. Together with

condition WEIGHT, the RHS of (15) has the following bound
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Hence,
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Lastly, we use the same argument as Lemma 7 to conclude that

BT c �
(

max
i=1,:::,sn

1p
T

X 0
iU � �n,T

2T (1�a)/2

)
w.p.a 1.

Proof of Theorem (3). By Lemma 7 and Lemma 8, w.p.a. 1

En,T (�n,TT�
1�a
2 ) � An,T \Bn,T .

Together with Lemma 5 and Lemma 6, we have

Pr[sign(β̂adalasso) = sign(β0)] � P (An,T \Bn,T )
� P [En,T (�n,TT�(1�a)/2)]! 1.
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B Robustness Check

We conduct a robustness check for the forecasting exercise in Section 4.3.2. In particular,

we estimate the coefficients in equation (2) with sample from 1960:01 to 2015:12. This

set of coefficients was then used to detrend all observations from 1960:01 to 2022:12.

This forecasting exercise intends to use no data of the out-of-sample forecasting period

to conduct the detrending procedure, including the upcoming COVID shock. Because

this exercise modifies the calculation of the detrending coefficients, only results displayed

in the grey-colored cells, i.e., those concerns the automatic detrending method, differs

from the results in Table 3 and 4.

In short, we find no significant changes to our all main takeaways in Section 4.3.2.

Table 5 and Table 6 display the forecasting results of CPI and IP during 2016:01 to

2022:12 with the new detrending coefficients. We find that the performances of LASSO

and adaptive LASSO are slightly worse when h is below 6 months, although there are

also some improvement for adaptive LASSO when h is longer than 10 months. On the

contrary, the bagging method performs slightly worse when h is longer than 10 months.
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